

Study design

Neuromuscular Electrical Stimulation (NMES) as an Add-on Therapy for the Improvement of Dyspnea in Patients with Post-Covid Syndrome: a Protocol for a Phase II Randomized, Non-Pharmacological Intervention-Controlled, Double-Blind Study

Anusree Kumar¹, Cristina Xicota^{2*}, Anny Chin³, Julia Pelanda⁴, Thiago Monaco⁵, Lena Mohamed⁶, Katia Borges⁷, Sabrina Pina⁸, Ricardo Espinoza⁹, Mario Prieto¹⁰, Jose Orenday-Barraza¹¹, Monica Ramirez¹², Danielle Carolina Pimenta¹³, Matías Herrera¹⁴, Eliza Ricardo¹⁵, Ippolito Notarnicola¹⁶ and Aseel Sukik¹⁷.

> ¹International Olympic Committee, Lausanne, Switzerland; ²Universitat Internacional de Catalunya, Barcelona, Spain; ³Syneos Health, São Paulo, Brazil; ⁴Hospital Das Clínicas, Universidade Federal do Paraná, Curitiba, Paraná, Brazil; ⁵Hospital Sirio-Libanes, Sao Paulo, Brazil; Eurofarma Laboratories, Brazil; ⁶PPCR, Harvard T.H. Chan School of Public Health - ECPE, Boston, USA; ⁷University of Lisbon, Faculty of Medicine, Lisbon, Portugal; ⁸Texas Children's Hospital, Houston, TX, USA; ⁹Brigham Young University, Provo, Utah, USA; ¹⁰Fair Have Community Health Care, New Heaven, CT, USA; ¹¹University of Arizona, College of Medicine, Phoenix, USA; ¹²Francisco Marroquin University School of Medicine, Guatemala City, Guatemala; ¹³Bahia School of Medicine and Public Health, Salvador de Bahía, Brasil; ¹⁴Hospital Profesor J.P. Harrahan, Argentina; ¹⁵Hospital Almeao Oswaldo Cruz, Sao Paulo, Brazil; ¹⁶Research Fellow Center of Excellence for Nursing Scholarship OPI, Rome, Italy; ¹⁷Internal Medicine Department, Hamad Medical Corporation, Doha, Qatar.

*Correspondence: Cristina Xicota, cristina.naqui@gmail.com

Received: Dec 2021; accepted: May 2022; published: Nov 2022.

Appendix

Appendix A. Estimates of central tendency and dispersion in different Post-Covid patient cohorts from the existing literature in 2021.

Author- Year	Title	Ν	Time Evalu- ation	6-MWT (mean- median)	Dispersion
Strumiliene et al. (2021)	Follow-Up Analysis of Pulmonary Function, Exercise Capacity, Radi- ological Changes, and Quality of Life Two Months after Recovery from SARS-CoV-2 Pneumonia	51	2 Months	553.5	86.96
Salles-Rojas et al. (2021)	Masking the 6-Minute Walking Test in the COVID-19 Era	77	>1 Month	517.6	90.6
Madrid-Mejía et al. (2021)	Improvement in Walking Distance Lags Raise in Lung Function in Post-COVID Patients	70	6 Months	526	104.5
Huang, Tan, et al. (2020)	Impact of coronavirus disease 2019 on pulmonary function in early convalescence phase	57	> 1 Month	561.97	45.29
Morin et al. (2021)	Four-Month Clinical Status of a Cohort of Patients After Hospitaliza- tion for COVID-19	177	> 2 Months	462	380-507
Huang, Huang, et al. (2021)	6-month consequences of COVID-19 in patients discharged from hos- pital: a cohort study	1733	6 months	495	440-538
Shah et al. (2020)	A prospective study of 12-week respiratory outcomes in COVID-19- related hospitalizations	60	3 months	504	107

Appendix B. Literature review in PubMed considering publications released in the last 10 years that used NMES as the intervention. Out of 18 publications, 6 mentioned that performed 6MWT.

First author	Title	Participants randomized	Participants completed	Drop- out rate
Sillen et al. (2014)	Efficacy of lower-limb muscle training modalities in severely dyspnoeic individuals with COPD and quadriceps muscle weak-ness: results from the DICES	73	51	30%
Vieira et al. (2014)	Neuromuscular electrical stimulation improves clinical and phys- iological function in COPD patients	24	20	17%
Abdellaoui et al. (2011)	Skeletal muscle effects of electrostimulation after COPD exacer- bation: a pilot study	17	15	12%
Maddocks et al. (2015)	Neuromuscular electrical stimulation to improve exercise capac- ity in patients with severe COPD: a randomized double-blind, pla- cebo-controlled trial	52	36	30%
Valenza et al. (2018)	Effects of home-based neuromuscular electrical stimulation in se- vere chronic obstructive pulmonary disease patients: a random- ized controlled clinical trial	36	36	0%
Bonnevie et al. (2018)	Home-based Neuromuscular Electrical Stimulation as an Add-on to pulmonary rehabilitation does not provide further benefits in patients with chronic obstructive pulmonary disease: A multicen- ter Randomized Controlled Trial	73	51	30%

Appendix B. Literature review in PubMed considering publications released in the last 10 years that used NMES as the intervention. Out of 18 publications, 6 mentioned that performed 6MWT.

First author	Title	Participants randomized	Participants completed	Drop- out rate
Vieira et al. (2014)	Neuromuscular electrical stimulation improves clinical and phys- iological function in COPD patients	24	20	17%
Valenza et al. (2018)	Effects of home-based neuromuscular electrical stimulation in se- vere chronic obstructive pulmonary disease patients: a random- ized controlled clinical trial	36	36	0%
Bonnevie et al. (2018)	Home-based Neuromuscular Electrical Stimulation as an Add-on to pulmonary rehabilitation does not provide further benefits in patients with chronic obstructive pulmonary disease: A multicen- ter Randomized Controlled Trial	73	51	30%