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Abstract:  
Introduction: Run-In (RI) periods can be used to improve the validity of randomized controlled trials (RCTs), but their 
utility in Chronic Pain (CP) RCTs is debated. Cost-effectiveness analysis (CEA) methods are commonly used in evaluating 
the results of RCTs, but they are seldom used for designing RCTs. We present a step-by-step overview to objectively 
design RCTs via CEA methods and specifically determine the cost effectiveness of a RI period in a CP RCT. 
Methods: We applied the CEA methodology to data obtained from several noninvasive brain stimulation CP RCTs, 
specifically focusing on (1) defining the CEA research question, (2) identifying RCT phases and cost ingredients, (3) 
discounting, (4) modeling the stochastic nature of the RCT, and (5) performing sensitivity analyses. We assessed the 
average cost-effectiveness ratios and incremental cost effectiveness ratios of varied RCT designs and the impact on cost-
effectiveness by the inclusion of a RI period vs. No-Run-In (NRI) period. 
Results: We demonstrated the potential impact of varying the number of institutions, number of patients that could be 
accommodated per institution, cost and effectiveness discounts, RCT component costs, and patient adherence 
characteristics on varied RI and NRI RCT designs. In the specific CP RCT designs that we analyzed, we demonstrated that 
lower patient adherence, lower baseline assessment costs, and higher treatment costs all necessitated the inclusion of 
an RI period to be cost-effective compared to NRI RCT designs.   
Conclusions: Clinical trialists can optimize CP RCT study designs and make informed decisions regarding RI period 
inclusion/exclusion via CEA methods. 
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INTRODUCTION 

Run-In (RI) periods in Randomized Controlled Trials 
(RCTs) represent a defined time between enrollment and 
randomization during which all individuals receive the 
same intervention (i.e., placebo, active arm, or no 
intervention) (Brittain & Wittes, 1990; Cipriani & Geddes, 
2010). This methodology aids to identify subjects that  

 
should be excluded from the trial (e.g., placebo 
responders, non-compliant, intervention tolerance, etc.) 
and/or to enrich treatment response prior to 
randomization (Dworkin et al., 2010; Dworkin et al., 
2012; Gewandter et al., 2014; Pablos-Méndez, Barr, & 
Shea, 1998). Thereby, RI periods may improve the power 
and validity of RCTs (Hattori et al., 2019; Hewitt et al., 
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2011; Kim et al., 2018; Pablos-Méndez et al., 1998; Steiner 
et al., 2011; Yarlas et al., 2015). 

The qualitative advantages and disadvantages of 
including an RI in Pain RCTs, from initial proof of concept 
studies to confirmatory studies, has been highlighted by 
numerous groups (e.g., (Dworkin et al., 2010; Dworkin et 
al., 2012; Gewandter et al., 2014)). However, designing an 
efficient and effective RI period for a Pain RCT generally 
requires addressing numerous questions balancing 
“validity, generalizability, and efficiency” (Pablos-Méndez 
et al., 1998). Further limitations involve the general lack 
of quantitative standardized methods to even determine 
justification of an RI in a given Pain RCT.  

In health-economics, Decision-Support Tools (DSTs) are 
frequently employed to guide decisions that maximize 
resources. Cost Effectiveness Analysis (CEA) is one of the 
most frequently used DSTs in healthcare (Organization, 
2003). CEAs allow comparison of different treatment 
scenarios, whereby health benefits are defined in natural 
units and costs in monetary units, and commonly used for 
assessing the cost of health benefits of new vs. established 
treatments (Sox & Higgins, 2013). Herein, we 
demonstrate how a CEA approach can be used to 
optimize the use of resources in RCT design, with a focus 
on the need for an RI period in Pain RCTs. We depict a 
stepwise CEA approach through real world examples on 

Figure 1. CEA based RCT design analysis example. A. General Process Steps. B. The bottom panel provides examples of the Effectiveness Definition and RCT 
Designs examined in our CEA analysis. Note, Effectiveness Definitions can be based on any metric(s) that characterizes the trial design. For our specific 
examples we use the total patient sample size Nt, with the simplifying assumption that patient number needed is the same between the RI and NRI cohorts 
(i.e., patient therapeutic response characteristics are the same regardless of RCT design). We assess a generalized RCT Design with phases that are composed 
of a number of states, which are characterized by costs and state transition probabilities that differ between RCTs with/without an RI (NRI case in 
parentheses).  For this example, we enlarge the Design and Approval Phase and States in the bottom row for easier viewing. See Table 1 for complete state 
list and characteristics. 
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data obtained from a number of noninvasive brain 
stimulation (NIBS) Chronic Pain (CP) RCTs and an Opioid 
Use Disorder RCT which included CP patients 
(NCT02954432, NCT02330315, NCT02723929, 
NCT01404052, NCT03625752, NCT04206215, 
NCT04379115). 

METHODS 

Our approach informs decision-making on RI suitability 
in the design of a CP RCT (see Figure 1.A). We will detail 
the methodology for a CEA Based RCT Design, focused on: 
1. Defining the research question; 2. Identifying the RCT 
States and costs; 3. Discounting (cost and effectiveness); 
4. Modeling the random nature of the RCT; and 5. 
Performing a sensitivity analysis. We follow with the 
analysis of exemplary results based on data from 
previous NIBS studies.  We use this data to exemplify the 
approach and highlight how RCT design criteria can affect 
cost effectiveness, but not to make specific indication or 
therapy recommendations.   

CEA Step-1: The first step of our CEA Based RCT 
Design Analysis is defining the research question. 
Generating a well-defined research question entail: 1. 
Considering source material; 2. Identifying the CEA 
audience; 3. Defining effectiveness; 4. Highlighting 
potential comparators; 5. Setting the structure/format of 
results; and 6. Identifying the methods/tools necessary 
for answering the research question. For our CEA Based 
RCT Design Analysis examples, we explore the following 
general research question: 

‘Will an RCT with an RI period be more cost effective 
than an RCT with No-Run-In (NRI) period for 
demonstrating a statistically significant and clinically 
important difference in the Mean Change of a Primary 
Outcome measured at a Baseline and Final Assessment 
visit, between Intervention A and Placebo A on Indication 
X?’ (See Appendix-Table 1 for further details). 

Inherent to the research question is the definition of 
‘Effectiveness’, which is dependent on the intervention 
being studied, preliminary data sets available, and the 
RCT goals (i.e., the definition of ‘Effectiveness’ is unique to 
each specific RCT design). For our specific CEA examples, 
we define our metric of ‘Effectiveness’ as the total patient 
sample size, Nt (Active + Sham groups), (see Figure 1B), 
necessary to demonstrate a statistically significant and 
clinically important difference in the primary outcome. 
Herein, the primary outcome is the mean change in Visual 
Analogue Scale (VAS) scores of Pain between Active and 
Sham NIBS treatments in CP patients. As a real-world 
example, using data from past NIBS studies to solve Eqs.1 
and 2 in Figure 1B, a sample size of 26 patients (13 

Active, 13 Sham) is necessary to demonstrate a 
statistically significant, clinically important differences 
between Active and Sham treatments on the VAS 
endpoint (Salaffi, Stancati, Silvestri, Ciapetti, & Grassi, 
2004). For this example, we based the standard deviation 
of the therapeutic effects on NIBS CP studies (of 
Osteoarthritis (OA) of the knee (Moreno-Duarte et al., 
2013; Wagner & Dipietro, 2018)), a clinically important 
difference of the VAS OA pain metric of 33% (as defined 
by (Salaffi et al., 2004) as a “much better” clinically 
important difference), an 0.80 power, and an alpha of 
0.05; we also made the simplifying assumption that 
patient characteristics in the two cohorts are the same 
(see Appendix-Table 2 for additional details).   

CEA Step-2: The next step is identifying the 
fundamental Phases and States of the different RCT 
designs that will be compared, including the expected 
time and cost elements for each. First, one should identify 
the expected Phases of the RCT with and without an RI. 
For our examples, we break the RCT into the following 
Phases: 1. Design and Approval; 2. Recruitment; 3. Test 
Period (including sub-Phases a. Startup/Equipment 
Purchase, b. NRI Baseline period or RI Assessment period 
(for these models, we model the RI as a 1 week period 
designed to exclude patients who don’t meet RCT 
requirements (e.g., compliance with office visit 
attendance during RI period), see below), c. Treatment, d. 
Follow-up; and 4. Data Analysis (Figure 1B). We then 
break each Phase down further into individual States to 
more easily account for granular differences in the 
different RCT designs (Figure 1B). For determining State 
costs, we employ Levin’s ingredients method (Levin & 
McEwan, 2001). Every RCT element is assumed to have a 
cost, and all direct and indirect RCT costs should be 
accounted for. For determining State time durations, one 
can use data from past-studies or expert opinion (herein, 
we use the former (see trial list above), which are used to 
determine time and cost ranges for the CEA assessments 
(note, all studies and procedures were approved by the 
Institutional Review Boards at the study sites and written 
informed consent was obtained from all participants)). 
Thus, for each RCT design, one should define the 
individual Phases and States, the costs of each State, and 
the time necessary to complete each State. See Figure 1B 
and Table 1 for ‘Base-Case’ values, developed from past 
NIBS trials, which serve as the basis of exemplary CEAs 
explored herein (see Appendix-Table 3 for a cost 
worksheet).  
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CEA Step-3: The next step is determining the 

Discount rates for Cost and Effectiveness. Discounted 
Cost (DC) and Discounted Effectiveness (DE) are based on 
the concept that a dollar and effectiveness as utility, 
respectively, are worth more today than they are in the 
future, and are given by the following equations:  

 
and  
 

where id is the cost discount rate, rd is the effectiveness 
discount rate, t is the time, C is cost, and E is the measure 
of effectiveness (herein defined as Nt).  

CEA studies focused on RCT trial health effect 
outcomes are typically discounted between ~1.5% to 5% 
for effectiveness and ~3 to 6% for costs (Gravelle & Smith, 
2001; Organization, 2003; Treasury). However, there are 
no standard and accepted values for discounts for CEA  

 

based RCT Design Analyses. Thus, for our specific real-
world examples, we evaluate rd of 5% and id of 6% for the 
’Base-Case’ CEA assessments (but vary them during 
sensitivity analysis- see below).  

CEA Step-4: Next, in order to conduct an effective 
analysis of the total RCT costs the random nature of a 
clinical trial needs to be accounted for. The cost ingredient 
method described above, with the predicted flow from 
individual States, provides the foundation for using 
Markov Models to account for the State flow of the RCT 
(Norris, 1997). Markov models are stochastic processes 
that undergo transitions from one State (Xn=i) to another 
State (Xn+1=j) and are characterized by the property that 
probability Pij to transition from State i to State j is equal 
to P(Xn+1=j|Xn=i,Xn-1=,…,Xo=io)= P(Xn+1=j|Xn=i), or simply 
stated that the past and future are conditionally 

Table 1. ‘Base-Case’ Model States and Costs: Herein, we list each of the States for the No-Run-In RCT design (NRI) and the Run-In RCT design (RI), 
and the total cost per State in monetary and time units (see Appendix-Table 3 for further details)("Note, due to the methodological nature of this 
paper, we do not provide institutional specific salaries, overhead, or cost values, but instead we use averages across multiple institutions and/or 
published rates from the NIH where available, including:  https://www.opm.gov/policy-data-oversight/pay-leave/pay-administration/fact-
sheets/computing-hourly-rates-of-pay-using-the-2087-hour-divisor;https://grants.nih.gov/grants/guide/notice-files/NOT-OD-19-036.html; 
https://grants.nih.gov/grants/policy/salcap_summary.htm,") 

State # RI NRI RI NRI

Plan and Design RCT 1 3,398.26$             3,007.59$        1 1

Write IRB 2 1,241.86$             1,147.99$        1 1

Submit IRB 3 2,849.99$             2,849.99$        6 6

Minor Revision 4 539.05$                  535.96$             2.1 2

Major Revision 5 938.80$                  903.59$             5 4

IRB Approval (Process Approval) 6 336.62$                  336.62$             1/7 1/7

Training/Preparation 7 918.82$                  918.82$             1 1

Contact Patient 8 2.08$                        2.08$                   0.000595 0.000595

Phone Pre-Screening 9 6.25$                        6.25$                   0.00179 0.00179

In Person Consenting 10 494.00$                  486.00$             0.5 0.5

TP: Start Up Training/Prep Equip 11 28,377.10$          28,175.71$   1 1

Scheduling 12 112.18$                  112.18$        1 1

NRI Baseline 13NRI 424.97$        1

Run-In 13RI 868.73$                  1

Treatment Week 1 14 1,562.68$             1,562.68$        1 1

Treatment Week 2 15 1,498.54$             1,498.54$        1 1

Follow-up 1 16 375.62$                  375.62$             1 1

Follow-up 2 17 375.62$                  375.62$             1 1

Follow-up 3 18 375.62$                  375.62$             2 2

Follow-up 4 19 468.15$                  468.15$             2 2

Data-Analysis 20 14,468.53$          13,990.79$     1 1

Dollar Cost (USD) Time Cost (weeks)
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independent given the present. A State transition 
probability matrix,  

serves as the basis for modeling the State flow of our RCT 
models (Norris, 1997). The values of the transition 
probabilities can be directly gathered from study data or 
modeled based on past studies and/or expert opinion (for 
our models, we use data from past RCTs with and without 
RIs (see Figure 1 and Appendix-Table 4).  

Next, in order to simulate the State flow, we 
implement a Monte Carlo Simulation (MCS) method. 
MCSs are a class of computational algorithms that can be 
used to analyze stochastic systems to establish the odds 
for a variety of outcomes. MCS typically involves 3 steps: 
1) Randomly generate M inputs (or scenarios); 2) Run a 
simulation N times for each scenario on an RCT model 
being analyzed (herein, we implemented N=1000); and 
3) Collect and analyze the simulation outputs (For further 
details the reader is referred to Raffa (2016)).  

Specifically, for each of the States in the example 
models, we have defined a cost and time (Table 1) and 
transition probabilities to move from the State to another 
State (Figure 1 and Appendix-Table 4). This allows one 
to conduct an MCS and determine the distributions of the 
State terms (e.g., cost, days, number of steps through the 
model, etc.), from which descriptive statistics can be 
developed (e.g., Mean Discounted Cost (MDC) and Mean 
Discounted Effectiveness (MDE)).  While we focused on 
statistics related to the mean, other measures of central 
tendency (e.g., median) or variability (e.g., variance, 
entropy) could also be used to determine limits on cost-
effectiveness (see below).    

Finally, MCS allows one to explore RCT design 
criteria by building upon the fundamental model 
scenarios (Figure 2). In our CEA Based RCT Design 
Analysis, we assess varied state costs, state transition 
probabilities, number of institutions, patient evaluation 
capacity, and patient consent capacity. For our ‘Base-Case’ 
we model costs (Table 1), Pij’s (Appendix-Table 4), 
discounts (id=6%, rd=5%), and 3 patients simultaneously 
evaluated at one institution with up to 7 consented per 
week (modeled directly from past NIBS studies of 
comparable size which were used to define our CEA 
examples). We vary the range of these design parameters 
as part of the sensitivity analysis (see below).  

CEA Step-5: The final step is conducting a sensitivity 
analysis. Sensitivity analyses evaluate how changes in 
model inputs affect model outputs. To exemplify our CEA 
methodology, we implement a deterministic sensitivity 
analysis focused on criteria often considered during the 

RCT design process. Specifically, we investigated the RCT 
design impact on RI and NRI cost-effectiveness by varying 
the:  

o number of institutions conducting the trial 
(varied from 1 to 4), 

o number of patients that can be evaluated 
simultaneously at an institution (varied from 1 
to 5), 

o number of patients that can be consented 
weekly at an institution (varied from 1 to 7),  

o discount rates (rd varied from 0 to 50% in 5% 
steps and id from 0 to 10% in 1% steps), 

o costs (0.5-3x in 0.5 steps for different states), 
and 

o State transition probabilities (varying P 
(Xn+1=j|Xn=i) by 25% relative step changes- for 
example, if there was a ’Base-Case’ 75% 
transition likelihood for Treatment-Week State 

Follow-up State, we would investigate 75%, 
56.25%, 37.5% and 18.75% transition 
probabilities with complementary changes to 
the other possible States (e.g., Scheduling or 
Run-In States)). 

In addition to assessing a sample size N=26 which 
defines the ’Base-Case’ Model (see Step 1) we also assess 
N=1 and N=104 (which represents a sample size to 
necessary to demonstrate a minimal clinically important 
difference in VAS Pain scores, of 15%, between Active and 
SHAM conditions (Salaffi et al., 2004) in the primary 
endpoint of the research question, solved per Eqs. 1-2, as 
detailed in Step-1) (See Appendix-Table 2 for further 
details).  

Finally, we calculate the: 
o Incremental Cost Effectiveness Ratio (ICER), 

equal to (MDCRI-MDCNRI)/(MDERI-MDENRI), and  
o Average Cost Effectiveness Ratio (ACER), equal 

to MDC/MDE,  
o for the different RCT designs we are assessing. 
Although ICERs are conventionally recommended 

in CEA studies analyzing health outcomes (Briggs & Fenn, 
1997; Hoch & Dewa, 2008), ICER instability can result 
when compared Effectiveness metrics are small (as 
would be expected for ours based on equivalent Nt’s) 
(Bang & Zhao, 2012, 2014; Organization, 2003). Thus, we 
focus on the ACERs, and per our research question based 
on an all-or-none question of cost effectiveness, we also 
assess the difference in average cost effectiveness ratios 
for the RI and NRI RCT Designs (Laska, Meisner, & Siegel, 
1997).  We compared ACERRI to ACERNRI to determine 
cost-effectiveness per the ACERs (where an 
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ACERRI<ACERNRI would indicate RI cost-effectiveness per 
the ACERs). We also assess ICER cost-effectiveness 
decision criteria per (Briggs & Fenn, 1997), similar to 
what would be determined by CEA plane analysis (Bang 
& Zhao, 2014; Briggs & Fenn, 1997).  Comparisons are 
made between the resulting ACER and ICER decision 
criteria. 

RESULTS  

Below we compare the CEA results from the ’Base-Case’ 
model and those characterized by the range of variables 
defined above. 

For the ’Base-Case’ exemplary model, we found that 
the NRI Design was more cost effective than the RI Design 
per the ACER analysis (see Figure 3A). The sensitivity 
analysis demonstrated that the ACERs for the RI designs 
remained consistently greater than that of the NRI 
designs when varying the number of institutions, number 
of patients that could be consented per week/institution, 
number of patients that could be assessed 

simultaneously/institution, and/or cost discounts (with 
the other variables fixed at the ’Base-Case’ values) (for 
example see Figure 3B, Appendix-Table 5, Appendix-
Figure 1A).  Similarly, ICER analysis comparing the NRI 
and RI cost effectiveness, as dictated by (Briggs & Fenn, 
1997), would outright reject an NRI RCT Design or 
represent a trade-off condition in cost-effectiveness, with 
minimal increases of effectiveness at high costs. Although 
the above variables demonstrate a limited impact on the 
RI vs NRI design decisions for these exemplary models, 
they still have an impact on the overall RCT design cost 
effectiveness (See Figure 3.C and Appendix-Figure 1B 
where we compare the cost effectiveness of each NRI and 
RI RCT design to the NRI ‘Base Case’ (versus directly 
comparing each RI to NRI RCT designs for each specific 
design criteria as in the other results)).  

The Average and Incremental Cost-Effectiveness 
Ratios for the different RI vs NRI designs showed their 
greatest variation as functions of the Phase Costs and  

Figure 2. Markov Models, coupled with MCS, allow one to easily develop and assess complicated RCT designs based on the initial State 
building blocks. Focusing on just the Planning and Approval Phase of the RCT design, one can see how quickly the complexity increases 
from a ‘Single-Center Study’ to a ‘Four-Center-Study’ design. The methodology we present allows one to build up and assess increasingly 
complicated permutations of RCT designs, and systematically evaluate the cost effectiveness criteria, such as for example the total mean 
discounted cost for each scenario. 
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Figure 3. A. ’Base-Case’ NRI and RI CERs B. CERs as a function of simultaneous patient testing capacity for the ’Base-Case’ and N=104 models (with all 
other variables set to those levels of ’Base-Case’, note 26P-2TC indicates 26 patients, 2 patient testing capacity). C. CE Plane comparing varied RCT Design 
Criteria relative to the NRI ’Base-Case’. D. CERs as a function of Treatment Phase Costs for N=1, 26, and 104 models.  
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State Transition probabilities, particularly when 
analyzing the Test Period (TP) states (while keeping 
other variables fixed as defined by the ’Base-Case’ unless 
otherwise noted).   

When varying the NRI Baseline and RI costs (states 
13NRI and 13RI, see Table 4), but keeping their relative 
relationship equal, we found that the RI ACER was less 
than the NRI design for N=26 and N=104 when the 
Baseline and RI costs were approximately 0.6 and 0.63 
times those of the ’Base-Case’ costs, respectively. 
Furthermore, the ICERs for both indicated that the RI 
design was Cost-Effective when the Baseline/Run-In 
costs were approximately 0.5x the ’Base-Case’ costs.  
When varying the RI and NRI Treatment costs (states 14 
and 15, see Table 4), but keeping their relative 
relationship equal, we found that the RI RCT design was 
more cost effective than the NRI design for N=26, and 
N=104 when the Treatment costs were approximately 
1.78 and 1.66 times greater respectively than those of the 
’Base-Case’ per the ACER analysis, which was comparable 
to the ICER analysis (see Figure 3D). When varying the RI 
and NRI Follow-Up costs (states 16-19) we found that 
including an RI was not more cost effective as the follow-
up costs varied from 0.5-3.0x ’Base-Case’ costs; although 
adding an RI lead towards cost-effectiveness as a function 
of increased follow-up costs (see Appendix Figure 2). 
When varying the RI and NRI costs for the other states 
(while keeping the other values fixed), the RI designs only 
became cost effective compared to the NRI designs when 
the ratio of NRI/RI Phase costs was artificially skewed so 
the burden of including an RI was ignored (e.g., assuming 
Recruiting RI patients cost 0.5 that of NRI patients). 
Generally, when examining multiple cost Phase changes 
simultaneously (and/or with changes in discount rates, 
transition rates, etc.), the above effects compound 
themselves (e.g., decreasing the Baseline costs while 
increasing Treatment costs increases the overall cost 
effectiveness of the RI vs NRI design).  

While varying the NRI and RI State transition 
probabilities, we demonstrated that the RI design is more 
cost effective than the NRI design as function of decreased 
likelihood of transitioning to later RCT States before 
reaching the final follow-up (while keeping the RI 
transition probabilities constant), and the 
complementary effect while varying the NRI transition 
probabilities (Figure 4) (Note: figure focuses on just the 
TP for clarity). For these exemplary results, the RCT 
design was more cost-effective than the NRI design when 
the likelihood of transitioning to the next State decreases 
by just 25% of the ’Base-Case’ NRI design (and becomes 
more cost-effective with later State changes (e.g., State 16 
vs 15) and increased probability changes). The situation 

becomes increasingly complicated as one begins varying 
multiple State transition probabilities and other 
sensitivity criteria, such that the above effects generally 
compound themselves (see Appendix-Figure 3). The 
transition probability data demonstrates that an 
increased likelihood of patient dropout necessitates RI 
inclusion to be cost-effective. 

Finally, when varying the effectiveness discount, at 
Nt=104 the RCT RI design became cost-effective per the 
ACER analysis when rd reached ~16% (with lowest ICER 
at rd=15%) (see below and Appendix-Table 5F).   

DISCUSSION  

Generally, healthcare CEAs are used to compare the 
health effects of different treatments determined through 
RCTs. Herein, we demonstrated a method to use CEAs to 
assess the Design of such RCTs. We presented a step-by-
step guide for conducting a CEA for including/excluding 
an RI in a CP RCT with the goal of assisting researchers 
with their own RCT designs. The framework allows one 
to objectively quantify the impact of RCT design variables 
on the different phases of an RCT trial and on the overall 
cost-effectiveness of the trial.   

Past studies have explored aspects of the CEA based 
RCT design methodologies we presented herein, but have 
not provided a method to fully optimize RCT design 
and/or determine RI need based on RCT cost 
effectiveness (Brittain & Wittes, 1990; Eisenstein et al., 
2008; Huynh et al., 2014; Schechtman & Gordon, 1993; 
Schroy et al., 2009). For example, Schroy (Schroy et al., 
2009) and Huynh (Huynh et al., 2014) utilized CEA design 
methodologies to analyze RCT recruitment strategies, 
and thus did not consider RIs or full trial optimization. 
While Eisenstein (Eisenstein et al., 2008) assessed the 
impact of cost reductions across multiple design criteria 
for theoretical RCTs, Eisenstein did not explore RIs or RCT 
cost-effectiveness. The works of Brittain (Brittain & 
Wittes, 1990) and Schechtman (Schechtman & Gordon, 
1993) most closely resemble this study, particularly in 
terms of study goals. They assessed the Cost Effectiveness 
of RI periods, but based on computational “analogues” 
(e.g., “the randomized and eligible subjects ratio” 
(Schechtman & Gordon, 1993)). 

While our findings confirmed a number of their 
general results (e.g., RIs are likely to be cost-effective 
when: “per patient costs during the post-randomization 
as compared to the screening period are high” 
(Schechtman & Gordon, 1993)), their computational 
methods did not allow for trial design optimization due to 
the limited number of variables assessed via their 
equation based ‘analogue’ methodology.  
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 Figure 4. CERs as function of state transition probability 
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Thus, expanding upon these past works, we 
presented an expanded CEA based RCT design method 
which can determine RI cost effectiveness based on any 
quantifiable trial element.  

We demonstrated the real-world impact of specific 
RCT design variables (e.g., institutional capacity, 
treatment costs, sample sizes, and trial length) on the 
inclusion/exclusion of an RI in RCT Designs developed 
from past NIBS trials. For example, when the ’Base-Case’ 
models’ treatment period costs were increased by 78-
100%, an RI became necessary for the RCT to be cost-
effective (per the ACER and ICER analysis); thus, more 
expensive and/or prolonged treatments would 
necessitate an RI in the RCT design. As another example, 
when the ’Base-Case’ model patient drop-out rate 
increased by 25%, the need for an RI became necessary 
for the RCT to be cost effective. More challenging patient 
populations, common to Pain trials, would thus 
necessitate an RI. However, if the RCT included an 
enhanced adherence plan (such as offer commuting 
costs/parking, flexibility with scheduling, reduced time 
commitment) resulting in a large adherence to the study, 
the RI may not be cost effective (note, our data was 
developed from studies that maintained such measures; 
but as demonstrated through the modeling, benefits can 
quickly wane dependent on patient characteristics and 
trial size).  Even in cases where including an RI was not 
cost effective, the CEA Based RCT Design methods 
demonstrated how trial variables can be optimized.  For 
example, one can see that increasing the number of 
institutions improves effectiveness in the Nt=104 vs Nt= 
26 cases, with slight increases costs for both sample sizes 
(in both the NRI and RI conditions). This represents a 
design trade-off decision between increased 
personnel/facility costs, decreased trial duration, and 
increased effectiveness.  

Although each RCT should be tailored and 
optimized for patient type and treatment modality, we 
anticipate that a number of results will generalize across 
most Pain RCTs. For example, as above, RIs can improve 
cost effectiveness in RCTs with patient populations with 
lower adherence and in larger/longer trials where 
greater resources would be expended in patients that are 
likely to not complete the trial. There are also a number of 
quantitative trends that should be noted. For our 
examples, as CRI>CNRI, when the RI RCT duration is shorter 
than the NRI RCT duration (seen with the increased 
sample sizes) and the effectiveness discount is raised then 
ACERNRI > ACERRI, but as incremental differences in 
effectiveness become lower the ICERs can become quite 
high (Appendix-Table 5F). Ultimately though, what a 
researcher models for the value of rd inherently depends 

on the researcher’s RCT goal (if a researcher was 
evaluating an RCT of a life-saving treatment for 
immediate use, rd could be exceedingly high), but rd will 
not be an RCT design criteria that can be altered by the 
researcher for cost effectiveness optimization.  

Our analysis has some limitations. First, we assumed 
that the patient characteristics in the two cohorts were 
the same, and that including an RI had no impact on 
patient response to treatment (i.e., we did not consider 
the fact that patients who were randomized after the Run-
In period may have exhibited different clinical 
characteristics from those who initially enrolled (Pablos-
Méndez et al., 1998)).  Second, for the models we analyzed 
a generic 1-week RI design, which would exclude patients 
with poor compliance, although different RI designs and 
inclusion/exclusion criteria should be differentially 
accounted for in future studies. Additionally, as the CEA 
analysis was based on an RCT design which 
‘demonstrated statistically significant and clinically 
important difference in the Mean Change of a Primary 
Outcome measured at a Baseline and Final Assessment 
visit’, the effectiveness definition does not fully account 
for partly- or non-compliant patients (which could also 
require intention-to-treat analysis in the RCT design). 
Furthermore, sensitivity analysis was confined to a 
deterministic parameter analysis, neither probabilistic 
parameter assessments or model uncertainty were 
assessed herein (nor did we include the potential for 
intention-to-treat analysis in the RCT design) (Cost-
Effectiveness in Health and Medicine, 2016). Therefore, 
our analysis entails simplifying assumptions around the 
patient characteristics, effectiveness considerations, and 
sensitivity analysis that should be addressed in future 
work. Finally, future studies should explore hybrid CEA 
models that assesses the cost effectiveness of the RCT trial 
results and RCT trial design simultaneously, and further 
incorporate methods of statistical inference into the 
methodology. Analyses focused on assessing potentially 
skewed data sets, such as comparing incremental cost 
effectiveness ratios based both on the means and 
medians of effectiveness and cost distributions, should 
also be explored in future studies (Bang & Zhao, 2014). 

CONCLUSION  

To the best of our knowledge, this is one of the first in-
depth analyses of the cost-effectiveness of the inclusion of 
an RI period for CP RCTs. Using the methods outlined 
herein, researchers can design cost-effective RCTs 
with/without an RI based on an objective assessment of 
RCT design variables. Furthermore, while we focused on 
questions related to RCT RI periods, our CEA based RCT 
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design methods can be applied for the optimization of an 
RCT design for any indication and/or intervention. 
Ultimately the methods outlined herein will allow 
researchers to maximize resource use for specific trials, 
reduce waste, and/or free up resources for future studies.  
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